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What? 

From Wikipedia: 
  

An abstract model that organizes elements of data and 
standardizes how they relate to one another and to the 
properties of real-world entities. 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class TravelAnalysisZoneData(PydanticModel):

   """

   Space is segmented into discrete segments for use in travel model analysis. A travel analysis zone, or TAZ, is a unit of space.

   """

   id: PositiveInt

   """ ID

   Unique Identifier

   """

   private_dwellings: NonNegativeInt

   """ Private Dwellings

   A physical space where a single household resides. May be a standalone physical structure or part of a multi-unit structure.

   """

   employment_agriculture: NonNegativeFloat

   """ Employment in Agriculture Industry

   The number of people who work in a firm engaged in an agriculture-related business at this location on a typical weekday.

   """
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Defining your 
variables 
(including 
data types) 
and 
relationships  

Specify 
logical and 
useful model 
structures 
and 
formulations  

Data 
structures for 
input and 
output  

Database 
technologies  

Data Model  



Why?

7



8

Why? 

1  Documentation 



A. A firm-operated physical place identified in tax records as 
the employer of one or more worker. 

B. A physical place identified as the “work location” in a 
survey response of one or more worker.  

C. A firm-operated physical place to which one or more 
workers travels on a regular basis. 

D. Something else?  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Employment

Which is 
correct? 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Why? 

2  Relationships 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   @computed_field

   @property

   def employment_total (self) -> NonNegativeFloat:

       """ Total Employment

       The sum of employment across industry categories.

       """

       return (

           self.employment_agriculture

           + self.employment_mining

           + self.employment_construction

           + self.employment_manufacturing

           + self.employment_wholesale

           + self.employment_retail

           + self.employment_transport

           + self.employment_communication

           + self.employment_finance

           + self.employment_rental

           + self.employment_professional

           + self.employment_administrative

           + self.employment_education

           + self.employment_health

           + self.employment_social

           + self.employment_accommodation

           + self.employment_public_administration

           + self.employment_other

       )

Requiring users to 
sum fields is error 
prone, vague, and 

unnecessary. 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Why? 

Calculations that derive variables from other variables (e.g., 
total employment, household density) should be done in 
one and only one place.  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class Tour(TravelActivity ):

   """ Tour

   A tour is a round-trip movement, with or without stops, between home or work and a primary destination.

   """

   purpose: e.Purpose

   """ Purpose

    A label defining the purpose of the tour, which is the activity that takes place

    at the primary destination.   

   """

   return_to_origin : e.ModelTime

   """ Model Time

    The time of day category at which the traveler returns to the tour origin.  

   """

   trips: List[Trip]

   """ Trips on the Tour

    A trip is a movement between two of the tour origin, primary tour destination, or an intermediate stop.  

   """

   

Numerous 
relationships in 

activity-based models 
are implied by the 
model structures 

rather than explicitly 
defined. 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Why? 

3  Strings 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class Mode(IntEnum):

   """ Mode

   Provides an integer mapping for travel mode.

   """

   DRIVE_ALONE = 1

   SHARED_RIDE_2 = 2

   SHARED_RIDE_3 = 3

   WALK = 4

   BICYCLE = 5

   WALK_TO_TRANSIT = 6

   PARK_AND_RIDE_TRANSIT = 7

   KISS_AND_RIDE_TRANSIT = 8

   SCHOOL_BUS = 9

Strings should never 
be used in travel 

models: they are error 
prone and have 
relatively large 

memory footprints.  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Why? 

4  Validation (a.k.a. Verification) 



Data model software has verification tools that can be 
used to: 

● Check variable names  
● Check data types 
● Check relationships, e.g., if households > 0, then 

household population > 0 
● Compute “derived” variables, e.g., total employment, 

as needed 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Verification
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● Overture Maps (JSON Schema) 
● General Modeling Network Specification (JSON 

Schema) 
● Main Roads W.A. PTM Prototype (Pydantic) 
● Chandra Bot Project (Google Protocol Buffers) 
● Agent (internal data model or “schema”) 

https://github.com/OvertureMaps/schema/blob/main/schema/transportation/segment.yaml
https://json-schema.org/
https://github.com/zephyr-data-specs/GMNS/blob/main/spec/segment.schema.json
https://wsp-sag.github.io/client_mrwa_ptm_data_model/activitysim_input.html
https://docs.pydantic.dev/latest/
https://github.com/AEP50/chandra-bot/blob/master/chandra_bot/data_model.proto
https://protobuf.dev/
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Network Standard Example 

Source of Truth: Excel

Source Actionable: No

Verification Approach: Mark B.

String Avoidance: Int or short-string codes

Change Log: Excel versions, manual diffs?

Data Type Validation: Model run errors?



What would this look like? 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Pydantic
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class RoadwayNetworkLinkAttribute(BaseModel):

  """ Roadway Network Link Attribute

  Defines a standard network link

  """

  category: Category

  """ Category

   An enum defining whether the attribute is required, optional, for information, etc.

   See enum.py for complete details

  """

  eight_char_name: Annotated[str, StringConstraints(max_length=8)]

  """ Eight Character Name

   A variable name limited to eight characters to use in select software programs that

   require FORTRAN-like variable names. 

  """

  description: Annotated[str, StringConstraints(max_length=255)]

  """ Description

  A description of the variable.

  """

   ...

  

Illustrative Pydantic 
Approach  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class Category(IntEnum):

   """

   Category

   Provides integer mapping to the category of variable type.

   """

   CORE_FIELD = 1

   INFORMATION_ONLY = 2

   AUXILLIARY_USE = 3

   OVER_RIDE = 4

   VALIDATION_ONLY = 5

   MPO_USE = 6

  

Illustrative Pydantic 
Approach  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class a_node(RoadwayNetworkLinkAttribute):

  """ A Node

  The node identifier at the beginning end of the link.

  """

  value: ClassVar[PositiveInt]

  def __str__(self):

       return standard_name

  category = Category.CORE_FIELD

  eight_char_name = "A_NODE"

  standard_name = "a_node"

  description = "A Node Number"

  varies_by_model_time_period = False

  ...

   

Illustrative Pydantic 
Approach  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class RoadwayNetworkLink(BaseModel):

   """ Roadway Network Link

   A collection of roadway network attributes

   """

   a_node: ANode

   b_node: BNode

   distance: Distance

   posted_speed_limit: PostedSpeedLimit

   city_name: Optional[City]

    ...

class RoadwayNetwork(BaseModel):

   """ RoadwayNetwork

   Defines a roadway network standard

   """

   links: List[RoadwayNetworkLink]

   nodes: List[RoadwayNetworkNode]

Illustrative Pydantic 
Approach  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try:

   RoadwayNetwork(links = input_links, nodes = input_nodes)

   print("Verification successful")

except ValidationError as e:

   print(e)

Illustrative Pydantic 
Approach  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Network Standard Example 

Source of Truth: Python

Source Actionable: Yes

Verification Approach: Automated

String Avoidance: Enumerated variables

Change Log: GitHub

Data Type Validation: Python

Source of Truth: Excel

Source Actionable: No

Verification Approach: Manual Review?

String Avoidance: Int or string codes

Change Log: Excel versions, manual diffs?

Data Type Validation: Model run errors?
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Network Standard Example 

Pros 

1. Python — Yay! 

2. Verification cost → zero (verification is 
the killer feature of data models) 

3. Inconsistencies (definitions, data types, 
derived calculations) → zero 

4. Variable codes (e.g., intersection type) are 
defined in one and only one place 

Cons 

1. Python — Ugh! 

2. Excel version becomes “read only” 

3. Change 

4. Python code requires continuous, usually 
minor, maintenance 

5. Higher upfront cost, including becoming 
familiar with Pydantic (or something 
similar) 



Questions/Discussion
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