
On Using Data
Models in Travel
Forecasting
David Ory  
Presentation to Ohio Model User’s Group 
April 5, 2024 

Agenda

● What? 
● Why? 
● How? (and Where?) 
● Example: Ohio’s Roadway Network Standard  
● Questions/Discussions 

2

What?

3

4

What? 

From Wikipedia: 
  

An abstract model that organizes elements of data and
standardizes how they relate to one another and to the
properties of real-world entities. 

What? 
5

class TravelAnalysisZoneData(PydanticModel):

 """

 Space is segmented into discrete segments for use in travel model analysis. A travel analysis zone, or TAZ, is a unit of space.

 """

 id: PositiveInt

 """ ID

 Unique Identifier

 """

 private_dwellings: NonNegativeInt

 """ Private Dwellings

 A physical space where a single household resides. May be a standalone physical structure or part of a multi-unit structure.

 """

 employment_agriculture: NonNegativeFloat

 """ Employment in Agriculture Industry

 The number of people who work in a firm engaged in an agriculture-related business at this location on a typical weekday.

 """

What? 
6

Defining your
variables
(including
data types)
and
relationships  

Specify
logical and
useful model
structures
and
formulations  

Data
structures for
input and
output  

Database
technologies  

Data Model  

Why?

7

8

Why? 

1  Documentation 

A. A firm-operated physical place identified in tax records as
the employer of one or more worker. 

B. A physical place identified as the “work location” in a
survey response of one or more worker.  

C. A firm-operated physical place to which one or more
workers travels on a regular basis. 

D. Something else?  

9

Employment

Which is
correct? 

10

Why? 

2  Relationships 

Why? 
11

 @computed_field

 @property

 def employment_total (self) -> NonNegativeFloat:

 """ Total Employment

 The sum of employment across industry categories.

 """

 return (

 self.employment_agriculture

 + self.employment_mining

 + self.employment_construction

 + self.employment_manufacturing

 + self.employment_wholesale

 + self.employment_retail

 + self.employment_transport

 + self.employment_communication

 + self.employment_finance

 + self.employment_rental

 + self.employment_professional

 + self.employment_administrative

 + self.employment_education

 + self.employment_health

 + self.employment_social

 + self.employment_accommodation

 + self.employment_public_administration

 + self.employment_other

)

Requiring users to
sum fields is error
prone, vague, and

unnecessary. 

12

Why? 

Calculations that derive variables from other variables (e.g.,
total employment, household density) should be done in
one and only one place.  

Why? 
13

class Tour(TravelActivity):

 """ Tour

 A tour is a round-trip movement, with or without stops, between home or work and a primary destination.

 """

 purpose: e.Purpose

 """ Purpose

 A label defining the purpose of the tour, which is the activity that takes place

 at the primary destination.

 """

 return_to_origin : e.ModelTime

 """ Model Time

 The time of day category at which the traveler returns to the tour origin.

 """

 trips: List[Trip]

 """ Trips on the Tour

 A trip is a movement between two of the tour origin, primary tour destination, or an intermediate stop.

 """

Numerous
relationships in

activity-based models
are implied by the
model structures

rather than explicitly
defined. 

14

Why? 

3  Strings 

Why? 
15

class Mode(IntEnum):

 """ Mode

 Provides an integer mapping for travel mode.

 """

 DRIVE_ALONE = 1

 SHARED_RIDE_2 = 2

 SHARED_RIDE_3 = 3

 WALK = 4

 BICYCLE = 5

 WALK_TO_TRANSIT = 6

 PARK_AND_RIDE_TRANSIT = 7

 KISS_AND_RIDE_TRANSIT = 8

 SCHOOL_BUS = 9

Strings should never
be used in travel

models: they are error
prone and have
relatively large

memory footprints.  

16

Why? 

4  Validation (a.k.a. Verification) 

Data model software has verification tools that can be
used to: 

● Check variable names  
● Check data types 
● Check relationships, e.g., if households > 0, then

household population > 0 
● Compute “derived” variables, e.g., total employment,

as needed 

17

Verification

How? (and Where?)

18

Examples

19

● Overture Maps (JSON Schema) 
● General Modeling Network Specification (JSON

Schema) 
● Main Roads W.A. PTM Prototype (Pydantic) 
● Chandra Bot Project (Google Protocol Buffers) 
● Agent (internal data model or “schema”) 

https://github.com/OvertureMaps/schema/blob/main/schema/transportation/segment.yaml
https://json-schema.org/
https://github.com/zephyr-data-specs/GMNS/blob/main/spec/segment.schema.json
https://wsp-sag.github.io/client_mrwa_ptm_data_model/activitysim_input.html
https://docs.pydantic.dev/latest/
https://github.com/AEP50/chandra-bot/blob/master/chandra_bot/data_model.proto
https://protobuf.dev/

Network Standard
Example

20

21

Network Standard Example 

Source of Truth: Excel

Source Actionable: No

Verification Approach: Mark B.

String Avoidance: Int or short-string codes

Change Log: Excel versions, manual diffs?

Data Type Validation: Model run errors?

What would this look like? 

22

Pydantic

Network Example 
23

class RoadwayNetworkLinkAttribute(BaseModel):

 """ Roadway Network Link Attribute

 Defines a standard network link

 """

 category: Category

 """ Category

 An enum defining whether the attribute is required, optional, for information, etc.

 See enum.py for complete details

 """

 eight_char_name: Annotated[str, StringConstraints(max_length=8)]

 """ Eight Character Name

 A variable name limited to eight characters to use in select software programs that

 require FORTRAN-like variable names.

 """

 description: Annotated[str, StringConstraints(max_length=255)]

 """ Description

 A description of the variable.

 """

 ...

Illustrative Pydantic
Approach  

Network Example 
24

class Category(IntEnum):

 """

 Category

 Provides integer mapping to the category of variable type.

 """

 CORE_FIELD = 1

 INFORMATION_ONLY = 2

 AUXILLIARY_USE = 3

 OVER_RIDE = 4

 VALIDATION_ONLY = 5

 MPO_USE = 6

Illustrative Pydantic
Approach  

Network Example 
25

class a_node(RoadwayNetworkLinkAttribute):

 """ A Node

 The node identifier at the beginning end of the link.

 """

 value: ClassVar[PositiveInt]

 def __str__(self):

 return standard_name

 category = Category.CORE_FIELD

 eight_char_name = "A_NODE"

 standard_name = "a_node"

 description = "A Node Number"

 varies_by_model_time_period = False

 ...

Illustrative Pydantic
Approach  

Network Example 
26

class RoadwayNetworkLink(BaseModel):

 """ Roadway Network Link

 A collection of roadway network attributes

 """

 a_node: ANode

 b_node: BNode

 distance: Distance

 posted_speed_limit: PostedSpeedLimit

 city_name: Optional[City]

 ...

class RoadwayNetwork(BaseModel):

 """ RoadwayNetwork

 Defines a roadway network standard

 """

 links: List[RoadwayNetworkLink]

 nodes: List[RoadwayNetworkNode]

Illustrative Pydantic
Approach  

Network Example 
27

try:

 RoadwayNetwork(links = input_links, nodes = input_nodes)

 print("Verification successful")

except ValidationError as e:

 print(e)

Illustrative Pydantic
Approach  

28

Network Standard Example 

Source of Truth: Python

Source Actionable: Yes

Verification Approach: Automated

String Avoidance: Enumerated variables

Change Log: GitHub

Data Type Validation: Python

Source of Truth: Excel

Source Actionable: No

Verification Approach: Manual Review?

String Avoidance: Int or string codes

Change Log: Excel versions, manual diffs?

Data Type Validation: Model run errors?

29

Network Standard Example 

Pros 

1. Python — Yay! 

2. Verification cost → zero (verification is
the killer feature of data models) 

3. Inconsistencies (definitions, data types,
derived calculations) → zero 

4. Variable codes (e.g., intersection type) are
defined in one and only one place 

Cons 

1. Python — Ugh! 

2. Excel version becomes “read only” 

3. Change 

4. Python code requires continuous, usually
minor, maintenance 

5. Higher upfront cost, including becoming
familiar with Pydantic (or something
similar) 

Questions/Discussion

30

