
Three Generations of Travel Modeling: Where We've Been and Where We're Going

Where Did I Start with Models?

1973

FRONT ROW: F. Clark, W. Davies, S. Blue, C. McCants, R. Kolb, A. DeBiase, A. Schroder III; <u>SECOND ROW</u>: S. Adkins, R. Gorman, S. Wallace, K. Kaltenbach, G. Ellis, K. Toda; <u>THIRD ROW</u>: M. Zdon, R. Watson, K. Jones, J. Tucker, D. Keck, J. Marshall, R. Brown, D. Morris; <u>FOURTH ROW</u>: P. Linden, S. Gray, Jr., D. Strohbusch, P. Patneaude, A. Batchelder, K. Bingham, W. Keller, Jr., D. Smith; <u>FIFTH ROW</u>: (right side) R. Karasawa, H. Skinner; <u>SIXTH ROW</u>: T. Weeks, D. Hawley, A. Lebeau, C. Ricks, C. Rodriguez, J. Isaacson, W. Evans, J. Stevens; <u>BACK ROW</u>: W. Otto, A. Hughes, J. McClain, R. Warner, S. Burnham, T. Adams, C. Case APPLICATION OF GRAVITY AND INTERVENING OPPORTUNITIES MODELS TO RECREATIONAL TRAVEL IN KENTUCKY By

Kenneth Donald Kaltenbach

John a Quarr-Director of Thesis Den <u>Nerri</u> Director of Graduate Study April 14, 1972

2002

Why do we do this?

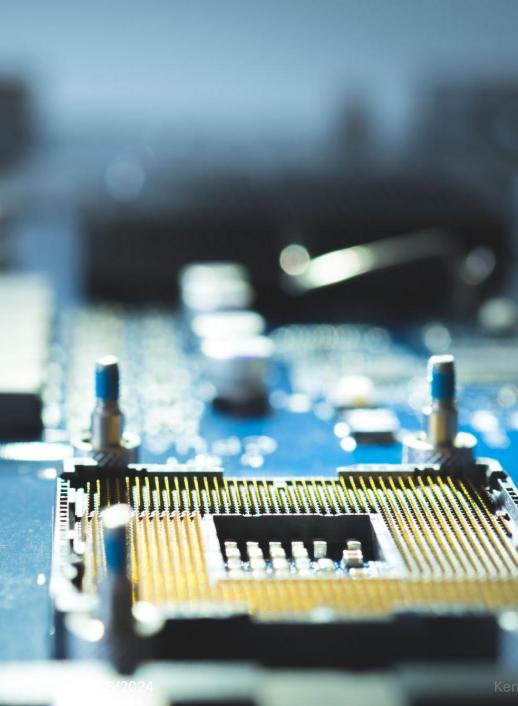
KEY OBJECTIVES

- **Infrastructure Planning**: Helps in designing and developing transportation infrastructure like roads, bridges, and public transit systems to meet future demand.
- **Policy Making:** Assists policymakers in making informed decisions about transportation policies, such as congestion pricing, tolls, and public transit subsidies.
- **Environmental Impact**: Evaluates the potential environmental impacts of transportation projects, helping to minimize negative effects on the environment.
- **Economic Analysis**: Supports economic analysis by estimating the benefits and costs of transportation projects, ensuring efficient allocation of resources.
- **Traffic Management**: Aids in managing traffic flow and reducing congestion by predicting where and when traffic will be heaviest.

Were these always the reasons?

- **President Eisenhower 1956 ...** (WWII German autobahn).
- Original Reason: Interstate Highway System (National Interstate and Defense Highways). The four-step model (FSM) was created to predict future traffic patterns, including the number of trips, their destinations, modes of transportation, and routes used.
- In most cases: Transit, non-motorized trips, freight travel, were of little interest.
- **Some interest:** Long-distance trips on interstates and rail systems.
- **Even today:** Many DOT's of largely rural states focus only on highways.
- **USDOT Funding:** 56% goes to highways and bridges (2024 budget).
- **Ohio DOT: 81.7%** goes to highways and bridges (2024 budget).

Why did it change?


- One big reason (not the only one): The National Environmental Policy Act (NEPA) was signed into law by President Richard Nixon on January
 1, 1970. It was enacted to ensure that federal agencies consider the environmental impacts of their actions and decisions.
- We had to consider **more** than just highways!

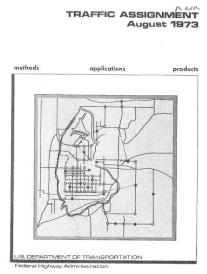
Travel Demand Modeling changed over time (or constant change is here to stay!)

- Need to solve more complex urban problems.
- Declining ability of highways to provide answers.
- Demand due to technology.
- Better hardware and tools.
- No more stick maps (Ok, a minor issue)!

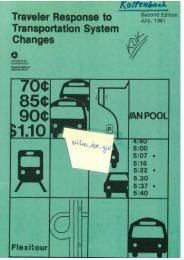
So, what has the journey been like?

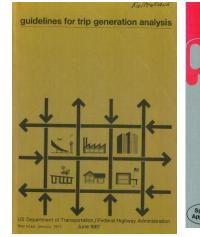
- When?
- What did we do, what were the tools?
 - Computer
 - OS
 - Platform
 - Scripting
 - Hardware
 - Approaches/Why

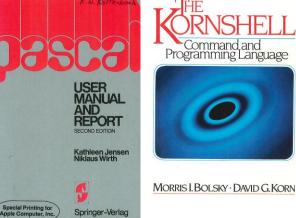
How to Calculate


dec	HEX	bin		dec	bin	Product	HEX				
0	0	0	-	1	0	0					
1	1	1		2	0	0	8	HEX	bin	DEC	
2 3	2	10					Ŭ		-		
	3	11		4	0	0		7E8	111111011000	<mark>2024</mark>	
4 5	4 5	100 101		8	1	8					
6	6	101		16	0	0				1	
7	7	111		32	1	32					
8	8	1000					F				
9	9	1001		64	1	64	E	1.275		H.	
10	Α	1010		128	1	128					
11	В	1011		256	1	256			Here when the	and the second s	
12	С	1100		512	1	512	7			-	
13	D	1101					/	W.		10	
14	E	1110		1024	1	1024					
15	F	1111		2048	0	0					
16	10	10000	-	Sum=		2024					

QUBITS anyone? Qubits can exist in two states simultaneously -> probabilistic output of a classical bit.


References




COMPUTER PROGRAMS FOR URBAN TRANSPORTATION PLANNIN PLANPAC/BACKPAC **GENERAL INFORMATION** APRIL 1977

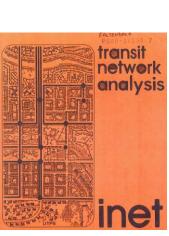
Kaltenbach

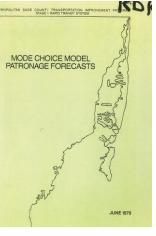
EUGENE L. GRAN W. GRANT IRES PRINCIPLES OF ENGINEERING ECONOMY RONALD

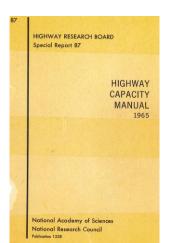
urban origin-destination surveys dwelling unit survey truck and taxi surveys external survey

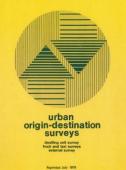
ease return to

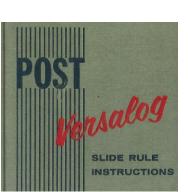
Ken Kaltenback


IN PLAIN ENGLISH




12/6/2024

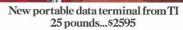

Calibrating & Testing a GRAVITY MODEL for Any Size Urban Area



Bureau of Public Roads

Tools in the 1970's

YEAR	Computer	OS	Platform	Scripting	Hardware	Approaches/Why
1965	Moore's law	IBM OS		Assembler	punch cards	integer Skims and
	IBM 7090/7094		BPR programs	FORTRAN	mag tape	Trip Tables
		JCL				HHOD> 12.5%
	IBM 360	IBM full OS UNIX	Planpac		Diskpacks	External OD roadside Interviews Model vehicles
		UNIX	Flanpac			Shirley Highway Managed Lanes
1970					Paper pen Plots	Model: fixed vs variable records net TAZ
	IBM 360/370					NEPA
			UTPS			
			Sin C			
1975					dial-up modems	Most editors not full-screen
	Motorola 6502			Basic	Floppy disks	Accuracy vs precision
	Apple II	Apple DOS				
1980	Lisa		microUTP			Micro speeds competive with Mainframe
				Pascal		Early Spreadsheets
	Intel 8088		Tranplan	dBase	Mouse	Much smaller sample sizes
	IBM PC	MSDOS/PC DOS	minUTP			
	Apple MAC			_		
1985		Windows 1.0	EMME/2 (Inro) TransCAD - dos	C++	CRT Plots	Most editors full screen IBM ISPF
		OS/2; AIX	TransCAD - dos			IBM ISPF
		00/2,/11/				
			QRS II			TIGER FILES
1990						8,192 max hwy links
	HDD's > 500mb	Linux		Python		Desktop GIS becomes available
			PT+; VISUM	Descriptions		Digital Maps
				R scripting		



Ken Kaltenbach - The Corradino Group

12/6/2024

On to the 1980's

YEAR	Computer	OS	Platform	Scripting	Hardware	Approaches/Why
1965	Moore's law	IBM OS		Assembler	punch cards	integer Skims and
	IBM 7090/7094		BPR programs	FORTRAN	magtape	Trip Tables
		JCL				HHOD> 12.5%
	IBM 360	IBM full OS			Diskpacks	External OD roadside Interviews
		UNIX	Planpac			Model vehicles
1970					Paper pen Plots	Model: fixed vs variable records net TAZ
	IBM 360/370					NEPA
			UTPS			
1975					dial-up modems	Most editors not full-screen
	Motorola 6502			Basic	Floppy disks	Accuracy vs precision
	Apple II	Apple DOS				
						Micro speeds competive with
1980	Lisa		microUTP			Mainframe
2000				Pascal		Early Spreadsheets
	Intel 8088		Tranplan	dBase	Mouse	Much smaller sample sizes
		MSDOS/PC				
	IBM PC	DOS	minUTP			
	Apple MAC					
1985			EMME/2 (Inro)	C++	CRT Plots	Most editors full screen
			TransCAD -			
		Windows 1.0	dos			IBM ISPF
		OS/2; AIX				
						TIGER FILES
1990			QRS II			
1990	HDD's >					8,192 max hwy links
	500mb	Linux		Python		Desktop GIS becomes available
			PT+; VISUM			Digital Maps
				R scripting		Ken Kaltenbach - The Corra

dino Group

11

YEAR	Computer	OS	Platform	Scripting	Hardware	Approaches/Why	
1995	Mainframe more or less gone	Windows 95	CUBE TransCAD windows	Java		No practical TAZ & Link limits New software is floating point	
2000	IBM RS/6000 RISC gone	Windows 98 Windows 2000 Windows XP			thumb drives Big external HHDs	BIG DATA emerges actvity-based models Monte Carlo simulation	
	broadband internet				1090p monitors hardwired internet	Aggregation errors	
2005	PC's with multi cores/64 bit Intel i7 chips					GTFS for transit begins	
2010	iPhone ssd's become common	Windows 7				Miami Managed Lanes C/AV's become an issue STOPS released	
2015	moores law prevails	Windows 10					
2020	Intel i9	Windows 11				Natural Language Processing Artificial Inteligence	
2025					Kers Kelle	appach The Correctine Croup	

Ken Kaltenbach - The Corradino Group

What's to Come?

- We don't see much C/AV yet, but we will. Might be a while. VMT will increase.
- Big Data will become better and more available. I hope it can be sanitized to include travel characteristics.
- Integration of Big Data and AI.
- More manageable Activity-based/tour models.
- Computers will get even faster and provide better graphics.
- Al will help us and provide more understandable outputs for policy makers.
- Autos will be cleaner. Hope their price will fall.
- Replacement for the gas tax.
- Urban transit will be better and will prevail.
- Better consideration of Sustainability and Environmental Considerations, Resilience and Adaptability.
- I hope we will quit carrying fuel around with us.

